Abstract

Particle distribution in the cross-section of the flighted rotating drum (FRD) is critical to the analysis of heat and mass transfer between gas and solids. In this work, the particle tracking velocimetry (PTV) method is applied to study the influence of the number of flights on the particle motion in FRDs. The drum, installed with 1, 4, 8, or 12 rectangular flights, is filled with plastic balls to 15% and operated at various rotating speeds ranging from 10rpm to 30rpm. The results show that the number of flights has different effects on the holdup ratio and cascading rate of single flight and active flights. With 8 and 12 flights, the FRD produces a larger and more stable particle ratio of the dilute phase. Moreover, DEM simulations agree with PTV measurements, whereas literature models show significant deviations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.