Abstract

The Jahn-Teller effect and the dissolution of Mn are significant factors contributing to the capacity degradation of spinel LiMn2O4 cathode materials during charging and discharging. In this study, Mo6+-doped polycrystalline octahedral Li1.05Mn2-xMoxO4 (x = 0, 0.005, 0.01, 0.015) cathode materials were prepared by simple solid-phase sintering, and their crystal structures, microscopic morphologies, and elemental compositions were characterized and analyzed. The results showed that the doping of Mo6+ promoted the growth of (111) crystalline facets and increased the ratio of Mn3+/Mn4+. The electrochemical performance of the materials was also tested, revealing that the doping of Mo6+ significantly improved the initial charge/discharge specific capacity and cycling stability. The modified sample (LMO-0.01Mo) retained a reversible capacity of 114.83 mA h/g with a capacity retention of 97.29% after 300 cycles. Additionally, the doping of Mo6+ formed a thinner, smoother SEI film and effectively inhibited the dissolution of Mn. Using density-functional theory (DFT) calculations to analyze the doping mechanism, it was found that doping shortens the Mn-O bond length inside the lattice and increases the Li-O bond length. This implies that the Li+ diffusion channel is widened, thereby increasing the Li+ diffusion rate. Additionally, the modification reduces the energy band gap, resulting in higher electronic conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.