Abstract
The phase composition, microstructure, and crystal structure of the AMT TU-48-4-366 (Technical Specifications) foundry alloy (which is used as the alloying material when smelting titanium alloys) are investigated by X-ray phase analysis, electron probe microanalysis, and microscopy. Lattice parameters of ɛ, p, and δ phases are calculated and their elemental composition is revealed. No formation of the Mo3Al refractory phase (tm = 2150°C) is observed during the primary crystallization of the Al-Mo-Ti foundry alloy in nonequilibrium conditions. Its presence in the refractory phase in the foundry alloy is caused by secondary crystallization processes, during which an ultradispersed mixture of Mo3Al + Mo3Al8 + TiMoAl6 phases is formed at temperatures 1311 and 1314°C. The ultradispersed silicon-containing σ phase with the Mo2.4Ti2.1Si0.8Al4.7 average composition, which was formed in nonequilibrium crystallization conditions, is revealed. Parameters and interplanar distances of its lattice are determined. It is established that the largest nonuniformity by molybdenum in peritectics of primary crystals occurs at a high crystallization rate, i.e., in the lower part of the Al-Mo-Ti ingot.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have