Abstract

Controlling the formation of surface nanostructures and nanotubes in particular is extremely important for various applications in electronic devices for energy systems, biosensing but also for the control of water adhesion. Here, we use a direct (without template) electropolymerization process to produce vertically aligned nanotubes. Different monomers are tested as well as different solvents, electrolytes and electrodeposition methods. We show that naphtho[2,3-b]thieno[3,4-e][1,4]dioxine (NaphDOT) is the best monomer to obtain these nanotubes while dichloromethane has to be used as solvent for their formation. The surfaces with nanotubes display both extremely high apparent contact angles (θw=142.7°) and high water adhesion even if the nanotubes are made of intrinsically hydrophilic polymers and are not densely packed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.