Abstract

Zoonotic visceral leishmaniasis is a vector-borne disease caused by Leishmania infantum in the Mediterranean Basin, where domestic dogs and wild canids are the main reservoirs. The promastigote stage replicates and develops within the gut of blood-sucking phlebotomine sand flies. Mature promastigotes are injected in the dermis of the mammalian host and differentiate into the amastigote stage within parasitophorous vacuoles of phagocytic cells. The major vector of L. infantum in Spain is Phlebotomus perniciosus. Promastigotes are routinely axenized and cultured to mimic in vitro the conditions inside the insect gut, which allows for most molecular, cellular, immunological and therapeutical studies otherwise inviable. Culture passages are known to decrease infectivity, which is restored by passage through laboratory animals. The most appropriate source of promastigotes is the gut of the vector host but isolation of the parasite is technically challenging. In fact, this option is not viable unless small samples are sufficient for downstream applications like promastigote cultures and nucleic acid amplification. In this study, in vitro infectivity and differential gene expression have been studied in cultured promastigotes at the stationary phase and in promastigotes isolated from the stomodeal valve of the sand fly P. perniciosus. About 20 ng RNA per sample could be isolated. Each sample contained L. infantum promastigotes from 20 sand flies. RNA was successfully amplified and processed for shotgun genome microarray hybridization analysis. Most differentially regulated genes are involved in regulation of gene expression, intracellular signaling, amino acid metabolism and biosynthesis of surface molecules. Interestingly, meta-analysis by hierarchical clustering supports that up-regulation of 22.4% of the differentially regulated genes is specifically enhanced by the microenvironment (i.e. sand fly gut or culture). The correlation between cultured and naturally developed promastigotes is strong but not very high (Pearson coefficient R2 = 0.727). Therefore, the influence of promastigote culturing should be evaluated case-by-case in experimentation.

Highlights

  • The genus Leishmania (Kinetoplastida: Trypanosomatidae) is responsible for leishmaniasis, a vector-borne parasitic disease with an estimated prevalence of 12 million people worldwide

  • L. infantum is the etiological agent of zoonotic visceral leishmaniasis in the Mediterranean Basin, where co-infection with the HIV has been reported [3,4]

  • The purpose of this study is comparing in vitro infectivity and differential transcript abundance of promastigotes isolated from two different environments: the anterior thoracic midgut of the experimentally infected P. perniciosus sand flies (Pro-Pper) and stationary phase of axenic culture (Pro-Stat)

Read more

Summary

Introduction

The genus Leishmania (Kinetoplastida: Trypanosomatidae) is responsible for leishmaniasis, a vector-borne parasitic disease with an estimated prevalence of 12 million people worldwide. Visceral leishmaniasis is the most severe form. It causes about 60,000 deaths annually [1,2]. L. infantum is the etiological agent of zoonotic visceral leishmaniasis in the Mediterranean Basin, where co-infection with the HIV has been reported [3,4]. The main reservoirs of L. infantum are domestic dogs and wild canids. Hares and rabbits have been involved as reservoirs in an outbreak in humans reported in the southwest of the Autonomous Community of Madrid [5,6,7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call