Abstract

BackgroundLeishmaniasis is caused by Leishmania parasites and is transmitted to humans through the bite of infected sand flies. Development of Leishmania to infective metacyclic promastigotes occurs within the sand fly gut where the gut microbiota influences development of the parasite. Paratransgenesis is a new control method in which symbiotic bacteria are isolated, transformed and reintroduced into the gut through their diet to express anti-parasitic molecules. In the present study, the midgut microbiota of three sand fly species from a steppe and a mountainous region of northern Iran, where zoonotic visceral leishmaniasis (ZVL) is endemic, was investigated.MethodsBriefly, adult female sand flies was collected during summer 2015 and, after dissection, the bacterial composition of the guts were analyzed using a culture-dependent method. Bacterial DNA from purified colonies was extracted to amplify the 16S rRNA gene which was then sequenced.ResultsThree ZVL sand fly vectors including Phlebotomus major, P. kandelakii and P. halepensis were found in the highlighted regions. In total, 39 distinct aerobic bacterial species were found in the sand fly midguts. The sand fly microbiota was dominated by Proteobacteria (56.4%) and Firmicutes (43.6%). Bacterial richness was significantly higher in the steppe region than in the mountainous region (32 vs 7 species). Phlebotomus kandelakii, the most important ZVL vector in the study area, had the highest bacterial richness among the three species. Bacillus subtilis and Pantoea agglomerans were isolated from the guts of the sand flies; these are already used for the paratransgenesis of sand flies and mosquitoes, respectively.ConclusionsThe existence of B. subtilis and P. agglomerans in the ZVL vectors and other sand fly species studied so far suggests that these two bacterial species are potential candidates for paratransgenic approach to prevent ZVL transmission. Further research needs to test the possible relationship between the gut microbiome richness and the vector competence of the ZVL vectors.

Highlights

  • Leishmaniasis is caused by Leishmania parasites and is transmitted to humans through the bite of infected sand flies

  • A total of 39 independent bacterial colonies or operational taxonomic units (OTUs) across six families was obtained from the midgut of the three field-collected sand fly species (Table 2)

  • The present study has provided a detailed investigation of the composition and richness of the gut microbiota in three sand fly species from two zoonotic visceral leishmaniasis (ZVL) foci with distinct geographical features using a culture-dependent method and sequencing of the 16S rRNA gene

Read more

Summary

Introduction

Leishmaniasis is caused by Leishmania parasites and is transmitted to humans through the bite of infected sand flies. The midgut microbiota of three sand fly species from a steppe and a mountainous region of northern Iran, where zoonotic visceral leishmaniasis (ZVL) is endemic, was investigated. Visceral leishmaniasis (VL) is endemic in more than 65 countries and caused by various Leishmania species, L. donovani and L. infantum having a major incidence. In Iran, zoonotic visceral leshmaniasis (ZVL) is caused mainly by L. infatum and is endemic in the northwestern and southern regions with 100–300 new cases every year [4,5,6]. Several sand fly species, including Phlebotomus perfiliewi transcaucasicus, P. kandelakii and P. tobbi in northeastern and northwestern and P. major (s.l.) (P. neglectus), P. keshishiani and P. alexandri in southern areas of the country, were incriminated as possible vectors of ZVL [8,9,10,11,12,13]. The lack of an effective vaccine against leishmaniasis, narrow ranges of effectiveness and unfavorable side effects of available drugs, and development of drug resistance in the parasite highlight the need for novel approaches to control vector transmission of L. infantum [14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call