Abstract

We investigate the stacking-order dependence of the double-resonant LO–ZO Raman combination mode, also called N mode, in ABA- and ABC-stacked trilayer graphene. By tuning the laser energy, we observe different N mode dispersions for both stackings and show that these shifts are indicative for the stacking type. We explain the different shifts with stacking-related changes in the electronic bands and the phonon dispersion. Additionally, we performed simulations of the double-resonant Raman spectra of the N mode in bilayer graphene. Our calculations predict a splitting of the N mode for laser excitation energies above 2.6 eV due to different contributions from both bands. We also analyzed the subpeaks of the N mode in few-layer graphene and explain their appearance only at even numbers of graphene layers. Graphical illustration of the in-plane LO and out-of-plane ZO -point vibrations in Bernal-stacked (AB-stacked) bilayer graphene. The unit-cell atoms are highlighted in blue. The dashed vertical lines denote the unit cell atoms that are directly above each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call