Abstract

The influence of the isovector neutron–proton (np) pairing effect on nuclear statistical quantities is studied in N ≈ Z even–even systems. Expressions of the energy, the entropy, and the heat capacity are established using a recently proposed temperature-dependent isovector pairing gap equations. They generalize the conventional finite temperature BCS (FTBCS) ones. The model is first numerically tested using the schematic one-level model. As a second step, realistic cases are considered using the single-particle energies of a deformed Woods–Saxon mean-field. It is shown that: (i) the gap parameter Δnp(T) behaves like Δtt(T), t = n, p, in the conventional FTBCS model and the critical temperature value Tcnp is such as Tcnp<Tcp<Tcn; (ii) the behavior of Δtt(T), t = n, p in the present model is different from that of the FTBCS one. This fact leads to a systematic discrepancy between the predictions of both models in the Tcnp<T<Tcn region for all studied statistical quantities; and (iii) in the 0≤T≤Tcnp region, the np pairing effect on the energy is a lowering of about 1%, on average, for all considered nuclei. Dealing with the entropy and the heat capacity, the np pairing effect appears only if the Tcnp value is sufficiently important.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call