Abstract

Surface treatments using multiple Ar ion irradiation processes with a maximum energy and fluence of 200keV and 1×1016ions/cm2, respectively, have been performed on two different metallic glasses: Zr55Cu28Al10Ni7 and Ti40Zr10Cu38Pd12. Analogous irradiation procedures have been carried out at room temperature (RT) and at T=620K (≈0.9Tg, where Tg denotes the glass transition). The structure, mechanical behavior, wettability and corrosion resistance of the irradiated alloys have been compared with the properties of the as-cast and annealed (T=620K) non-irradiated specimens. While ion irradiation at RT does not significantly alter the amorphous structure of the alloys, ion irradiation close to Tg promotes decomposition/nanocrystallization. Consequently, the hardness (H) and reduced Young’s modulus (Er) decrease after irradiation at RT but they both increase after irradiation at 620K. While annealing close to Tg increases the hydrophobicity of the samples, irradiation induces virtually no changes in the contact angle when comparing with the as-cast state. Concerning the corrosion resistance, although not much effect is found after irradiation at RT, an improvement is observed after irradiation at 620K, particularly for the Ti-based alloy. These results are of practical interest in order to engineer appropriate surface treatments based on ion irradiation, aimed at specific functional applications of bulk metallic glasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.