Abstract
The vegetation on the Tibetan Plateau (TP), as a major component of the land–atmosphere interaction, affects the TP thermal conditions. And, as a direct climatic factor of vegetation, precipitation over the TP is significantly regulated by the Indian summer monsoon (ISM). Using remote-sensing-based vegetation images, meteorological observations, and reanalysis datasets, this study deeply explored the influence of the ISM on vegetation on the TP in its main growing season, where the vegetation on the TP is indicated by the normalized difference vegetation index (NDVI). The findings reveal that the ISM is a critical external factor impacting the TP vegetation and has a significantly positive correlation with the TP precipitation and NDVI. Corresponding to a strong ISM, the South Asia high moves northwestward toward the TP and Iranian Plateau with an increase in intensity, and the cyclonic circulation develops over the south of the TP in the middle-lower troposphere. This tropospheric circulation structure aids in the transportation of more water vapor to the TP and enhances convection there, which facilitates more precipitation and thus the TP vegetation growth, featuring a uniform NDVI pattern. Since the positive correlation between precipitation over the TP and NDVI is weaker than that between the ISM and NDVI, we suggest that the ISM can influence the TP vegetation growth not only through changing precipitation but also through other local climatic factors. The increased convection and precipitation over the TP induced by the ISM can also affect the surface thermal conditions, featuring an interaction between the TP vegetation and heat sources. The evapotranspiration of vegetation and its coverage affect local latent and sensible heat fluxes, while the TP thermal condition changes affect in return the vegetation growth. In addition, the changes in thermal conditions over the TP caused by the substantial increase in vegetation may have a de-correlation effect on the relationship between the ISM and uniform NDVI pattern after the TP vegetation reaches its maximum coverage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.