Abstract

Proper simulation and modelling of geophysical flows is crucial to the study of numerical weather prediction, wind energy and many other applications. When simulating the atmospheric boundary layer, Coriolis forces act as a result of Earth’s rotation. The horizontal component of Earth’s rotation, which is often neglected, influences the balance of vertical momentum. The horizontal component results in systematic differences in the structure and statistics of stratified atmospheric boundary layers as a function of the direction of the geostrophic velocity. These differences are particularly relevant to atmospheric flows which include inhomogeneous roughness elements such as drag disks or wind turbines since the presence of these drag elements alters the balance between turbulent stresses and the Coriolis contributions in Reynolds stress budgets. Even at latitudes as high as , changing the geostrophic wind velocity vector direction alone changes the magnitude of shear stress, and therefore vertical transport of kinetic energy, in the conventionally neutral atmospheric boundary layer up to . As such, the boundary layer height, shear and veer profiles, surface friction velocity and other key features are affected by the direction of the geostrophic wind. The influence of the horizontal component of Earth’s rotation in stable nocturnal boundary layers depends on the strength of the stratification as there is a strong influence in the present study and a weak influence in the GEWEX Atmospheric Boundary Layer Study (GABLS) case. A model of the effect of the horizontal component on the boundary layer shear stress is also proposed and verified with the present simulations. While not studied here, the present observations are also relevant to the oceanic Ekman boundary layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call