Abstract

Two solutions for the parameters of a turbulent exhaust jet of a dual-duct engine — the traditional solution within the framework of Prandtl equations of the type of boundary-layer equations and calculation of the near-range field within the framework of the Navier-Stokes equations with subsequent calculation within the framework of the Prandtl equations for large distances — have been compared. It has been shown that the influence of the real geometry of the nozzle exit section, including the shift of the center body and the main duct forward from the exit section of the cold secondary duct, can be allowed for by correcting the constant of the source term in the differential equation for turbulent kinematic viscosity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.