Abstract

In this study, the short-term aging was carried out to reveal the evolution of precipitates and mechanical properties of heat resistant 9CrMoCoB steel during the early creep, replacing the conventional creeping. The tempered martensite lath structure (TMLS) and precipitates were observed in the as-aged 9CrMoCoB steel. TMLS in the matrix underwent a transition to the polygonal ferrite after aging only for 300 h. In comparison, the mean diameter of the precipitates increased from 183 to 267 nm after aging at 650 °C for 300 h. Also, the mean diameter of the precipitates increased from 183 to 302 nm at 700 °C. The room-temperature and high-temperature strength of 9CrMoCoB steel decreased after high-temperature aging, which may be mainly due to precipitates coarsening. Many M23C6 phases precipitate in the prior austenite grain boundary (PAGB) and lath boundary. After aging 100 h, TMLS transformed into polygonal ferrite, and the size of the precipitate at the subgrain boundary was about 100 nm, while after 300 h of high-temperature aging, large precipitates appear (400 nm) in the matrix. After 200 h of high-temperature aging, the obvious growth of precipitates on the PAGB and lath boundary weakens the pinning effect on the PAGB and martensite lath boundary and accelerates the transformation of microstructure and mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call