Abstract

In plasma microwave oscillators, electrons fall onto the surface of a graphite collector, which leads to the generation of secondary electrons. The influence of the electrons reflected from the collector on the parameters of a high-current relativistic electron beam propagating in a strong longitudinal magnetic field was studied experimentally and by numerical simulations. It is shown that the penetration of the reflected electrons into the drift space can lead to a substantial increase in the depth of the potential well in the drift space, a decrease in the velocity of the beam electrons, and a broadening of the electron energy distribution function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.