Abstract

Experimental determination of the dependence of recombination current in p + and n + regions on the dopant profile for shallow emitters of ion-implanted silicon solar cells is described. The results are analyzed by extending a previous analytical model for the transport of minority carriers in heavily doped regions. The extension accounts for an effective electric field, defined by heavy-doping effects at the surface, and suggests that the energy-gap narrowing for p + silicon is slightly smaller than that for n + silicon and/or that minority-carrier diffusivities are substantially lower than the majority-carrier ones at comparable dopant densities. The very high dopant densities achieved with the ion implantation/laser annealing technique provide an in situ surface passivation that supresses surface recombination and minimizes the emitter recombination current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.