Abstract

In this letter, we explore the influence of the CuxTe1-x layer composition (0.2 < x < 0.8) on the resistive switching of CuxTe1−x/Al2O3/Si cells. While x > 0.7 leads to large reset power, similar to pure-Cu electrodes, x < 0.3 results in volatile forming properties. The intermediate range 0.5 < x < 0.7 shows optimum memory properties, featuring improved control of filament programming using <5 μA as well as state stability at 85 °C. The composition-dependent programming control and filament stability are closely associated with the phases in the CuxTe1−x layer and are explained as related to the chemical affinity between Cu and Te.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.