Abstract

A series of polymer networks of varying cross-linking density was prepared by copolymerization of methyl acrylate and ethyleneglycol dimethacrylate. The aim of this work is to study the influence of cross-linking on the conformational mobility of the polymer chains using dielectric relaxation spectroscopy (DRS) in the temperature range of the main dielectric relaxation. As expected, the temperature range in which glass transition takes place became wider with increasing crosslinking density. DRS results were analyzed using the Havriliak-Negami equation. Master Cole-Cole arcs could be drawn for all the networks. The arcs become more symmetric as cross-linking density increases, as a consequence of the different effect of cross-links on large and small scale mobility. The conformational mobility that produces the main relaxation is drastically reduced when the cross-linking density increases what reduces the relaxation strength, but it also gives a qualitative change of behavior, as shown by the temperature dependence of the relaxation strength. In the loosely cross-linked networks the relaxation strength decreases monotonously as temperature increases, as in the main dielectric relaxation of linear polymers. Nevertheless, in highly cross-linked networks the curve of relaxation strength against temperature presents a maximum. POLYM. ENG. SCI., 45:1336–1342, 2005. © 2005 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.