Abstract
The influence of the carrier–envelope phase on the spectrum of the supercontinuum and on the characteristics of ultrashort pulses, which are formed by the nonlinear optical transformation of pump pulses in an argon-filled antiresonant hollow waveguide has been demonstrated. The experimental and theoretical analysis has shown that the soliton self-compression of pump radiation with a central wavelength of about 2 μm forms a pulse with a duration of nearly one optical cycle and with a spectrum broadened to the region of 400‒800 nm, where interference with the broadband third harmonic generated by the same pulse is observed. The interference pattern is sensitive to the carrier–envelope phase of the laser pulse. The analysis of the interference pattern provides information on the difference of the spectral phases of the soliton and third harmonic in the spectral range wider than an octave and allows one to control the duration of pulses formed in the process of soliton self-compression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.