Abstract

It covers the tribological behaviour of sliding surfaces, one of which has bowtie-shaped micro-dimples. Against the other fixed, textured wall, one wall is smooth and moving at a constant speed. For the formation of hydrodynamic pressure and tribological behaviour, the effects of bowtie-shaped dimples and orientated bowtie-shaped dimples have been compared with circular-shaped dimples. Additionally, the impact of sliding speed, dimple area density, and dimple depth on tribological behaviour was examined. The findings show that compared to a circular-shaped dimple, an atypical bowtie-shaped and orientated bowtie-shaped dimple generates a higher net hydrodynamic pressure in the fluid domain and offers improved stability between the sliding surfaces. It has been demonstrated that geometrical factors like dimple depth and area density as well as operational factors like sliding speed have a substantial impact on the hydrodynamic average pressure and tribological behaviour of sliding surfaces. The experimental results support the conclusions from the analysis and CFD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call