Abstract
The 5'-terminal sequence spanning nt 1-29 of the 5'-untranslated region of classical swine fever virus (CSFV) forms a 5'-proximal stem-loop structure known as domain Ia. Deletions and replacement mutations were performed to examine the role of this domain. Deletion of the 5'-proximal nucleotides and disruption of the stem-loop structure greatly increased internal ribosome entry site-mediated translation but abolished the replication of the replicons. Internal deletions resulting in a change in the size of the loop of domain Ia, and even removal of the entire domain, did not substantially change the translation activity, but reduced the replication of CSFV replicons provided the replicons contained the extreme 5'-GUAU terminal sequence. Internal replacements leading to a change in the nucleotide sequence of the loop did not alter the translation and replication activities of the CSFV RNA replicon, and did not influence the rescue of viruses and growth characteristics of new viruses. These results may be important for our understanding of the regulation of translation, replication and encapsidation in CSFV and other positive-sense RNA viruses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have