Abstract

AISI M42 high-speed steel is prone to fracture as a result of its brittle martensitic microstructure together with abundant carbides located at the grain boundaries. In this study, a series of property tests including hardness, impact toughness, and wear loss were performed to study the effect of tempering conditions on the mechanical properties of AISI M42 high-speed steel over holding time ranging from 1 to 20 hours. The effects of the tempering time on the characteristics and growth of carbides were also investigated. The results indicated that carbides in the experimental steels were obviously coarsened when the tempering time exceeded 4 hours. The dimension of the carbides increased, while the volume fraction decreased with the increasing tempering time, and the grain sizes were significantly augmented due to the reducing of small carbides. Moreover, the dislocation density decreased with the increasing tempering time, which led to the reducing of the yield stress of high-speed steel. An appropriate holding time (4 hours) resulted in fine-scale secondary carbides and a smaller grain size, which efficiently improved the impact toughness and wear resistance simultaneously. Nevertheless, a prolonged tempering time (> 4 hours) promoted the coarsening and coalescence of carbides, which were detrimental to the impact toughness and wear resistance. Consequently, the formation of fine-scale secondary carbides is the major influential factor to improve both the wear resistance and impact toughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call