Abstract

An investigation has been carried out, to elucidate some aspects of the current-controlled negative differential resistance (CCNDR) effect in bulk metal-chalcogenide glassy semiconductors. Because this phenomenon has been shown to be mainly of a thermal nature, a model, from the thermodynamic point of view, was developed, including some aspects related to the thermistors theory. The main conclusion from this model is the appearance of a current filament, which showed up when the material switched from the high electrical resistance to the low electrical resistance state, forming a crystalline filament between both electrodes. The variation of the CCNDR parameters with temperature and interelectrodic distance was studied, using both coplanar point electrodes and coplanar disc electrodes. The experimental results show a good agreement with the expected behaviour from the proposed thermal model (especially when natural convection was considered as the heat-exchanging process between the material and the ambient surrounding). In addition an algorithm was found to simulate the phenomenon computationally, using the experimentally determined physical parameters for the samples under study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.