Abstract

Objective: To investigate the consequence of task complexity on gross mechanical efficiency and propulsion technique during the learning process of hand rim wheelchair propulsion. Methods: Three groups of unimpaired subjects ( N = 10 each) received a 3-week wheelchair practice period (3 week −1, nine practice trials) with different levels of complexity, i.e. propelling a stationary wheelchair ergometer, wheelchair propulsion on a motor-driven treadmill or at a circular wheelchair track. During practice trials 1 and 9, gross mechanical efficiency and propulsion technique variables (work per cycle, cycle frequency, push and cycle time, effective force) were measured. Results: Using multi-level regression analysis, no differences in the development over time in mechanical efficiency and propulsion technique could be discerned between the three conditions of task complexity. Only the percentage push time during the cycle decreased significantly more in the group that practiced on the ergometer compared to the treadmill-practice group. For all three groups a change over time was shown for cycle frequency, push time and cycle time. Discussion: Under the current experimental conditions, task complexity does not have an influence on gross mechanical efficiency and propulsion technique during the learning process of wheelchair propulsion. The 3-week practice period had a favorable practice effect on timing regardless of the task complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.