Abstract

The influence of the spontaneous surface modification of titanium by exposure to Ringer's solution at open-circuit conditions on the passive behavior was studied. The electrochemical behavior of Ti was compared in a simple NaCl and in Ringer's physiological solution. Potentiodynamic polarization curves show significantly higher passive current densities in Ringer's solution as compared with the simple saline solution. Furthermore, impedance spectra measured at the open-circuit potential as a function of time indicate that in saline solution a long-term exposure over some days leads to a strong increase of the protectiveness of the passive film. This improvement of the passive behavior cannot be observed in Ringer's solution, but a strong modification of the passive film/electrolyte interface can be seen in the impedance spectra. The changes in the impedance spectra can be correlated with the results observed by surface characterization regarding the morphology (scanning electron microscopy) and chemical composition of the surface (X-ray photoelectron spectroscopy). In agreement with previous work by others, a spontaneous modification of the surface of Ti by Ca and P species was observed. The composition of the Ca/P precipitates changes as a function of time, indicating a slow formation of a hydroxyapatite-like deposit layer on the surface. The results of the present work indicate that the formation of the outer Ca-P deposit layer on the passive Ti surface (which is beneficial for the biological performance) hinders the normal aging of the passive TiO(2). Even though the protectiveness of the passive film can be considered as high also in Ringer's solution, significantly higher passive dissolution rates (i.e., higher metal-ion release) for Ti exposed to Ringer's solution can be expected as compared with a simple saline solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.