Abstract

ObjectiveTo evaluate the effect of ions released from surface pre-reacted glass-ionomer (S-PRG) filler on collagen morphology, remineralization, and ultimate tensile strength (UTS) of demineralized dentin. Materials and methodsBovine incisor root dentins were demineralized with EDTA and divided into three treatment groups: 1) water (control); 2) S-PRG filler eluate; 3) 125 ppm sodium fluoride (NaF). After a 3-min treatment, the specimens were stored in simulated body fluid (SBF) for 3 months. Collagen morphology and remineralization were assessed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). Additionally, ultimate tensile strength (UTS) was measured. ResultsTEM and SEM demonstrated that S-PRG induced more effective remineralization compared to NaF, while the control group exhibited faint mineral deposition with collagen degradation. S-PRG displayed the most homogenous mineral deposition in collagen fibrils, along with closure of interfibrillar spaces. Extensive mineral precipitation was observed within dentinal tubules in the S-PRG group. In addition, S-PRG filler eluate demonstrated significantly higher phosphate-to-amide ratio and UTS compared to NaF and control groups (p < 0.05). ConclusionsIon released from S-PRG filler positively influenced collagen morphology, remineralization, and ultimate tensile strength of demineralized dentin. Clinical significanceS-PRG filler enhances remineralization and improve the biomechanics of demineralized dentin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call