Abstract

This study utilized a hydrothermal method to synthesize various metal-modified rod-like ceria catalysts (Fe, Co, Cu, Ni, La), achieving efficient COS removal at low temperatures. The research identified surface oxygen vacancies and basic sites as critical factors that influence the catalytic performance of COS hydrolysis. The addition of different metals to pristine ceria rods increased the specific surface area, oxygen vacancy content (Ov), and basicity, which enhanced the catalysts' sulfur resistance and stability. Among all the catalysts tested, 10La-CeO2 demonstrated the highest COS removal rate. This is because La doping significantly augmented Ov, providing more H2O adsorption and activation sites. Furthermore, 10La-CeO2 showed enhanced Lewis basicity, making it easier for COS to adsorb and promote hydrolysis. The in situ DRIFTS results confirmed that appropriate oxygen vacancies and basic sites favored the formation of intermediates such as HCO3 - and HSCO2 -, promoting the decomposition of COS into H2S and CO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.