Abstract

SO2-ethanol-water (SEW) is a promising pretreatment for improving enzymatic digestibility of biomass through simultaneously removing hemicellulose and lignin. In this work, SEW pretreatment was performed at different cooking times (10 min–60 min) and different SO2 concentrations (0.5%–2%) to produce pretreated bamboo residues for enzymatic hydrolysis. Meanwhile, physicochemical features of the residual cellulose and lignin were analyzed to better understand how SEW improves enzymatic digestibility. Under optimized SEW pretreatment condition (1% SO2 concentration, 150 °C, 60 min), 81.7% of xylan and 80.3% of lignin were solubilized, along with 89.1% of cellulose preserved in pretreated solid. A good enzymatic digestibility (80.4%) was achieved at optimum SEW condition. Several compelling correlations (R2 > 0.7) were observable between enzymatic digestibility and physicochemical features, demonstrating the importance of SEW pretreatment abilities of hemicellulose and lignin removal, reducing cellulose’s degree of polymerization, and improving the amount of sulfonyl groups imparted to the original lignin structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.