Abstract

For single‐layer NbS2, the effect of torsional deformation on the electronic structure of defect NbS2 is studied by first principles. The electronic structure changes caused by two defect states are recorded: energy band, bond length, defect formation energy, electronic state density, and differential charge density. Single‐air sulfur defect VS and double‐air sulfur defect V2S are studied. Based on the two states, the defect system is twisted. The results show that the indirect bandgap of NbS2 is successfully induced by twisting the defect system, and the single‐layer NbS2 is transited into a diluted semiconductor. At the same time, the electronic characteristics can be controlled regularly. On the other hand, the hybrid system can significantly improve the absorption coefficient and transmittance of single‐layer NbS2 in the visible light region, promote the reflection of ultraviolet light, and effectively improve the optical response and photocatalytic activity in the low‐energy region. The results herein lay a foundation for the flexible application of 1T‐NbS2 according to its electronic and optical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call