Abstract

AbstractX‐ray and neutron diffraction have been utilized to analyze the crystalline and electronic structure of lanthanum orthoniobate substituted by antimony. Using X‐ray absorption spectroscopy and photoelectron spectroscopy, changes in the electronic structure of the material upon substitution have been analyzed. The structural transition temperature between fergusonite and scheelite phases for 30 mol% antimony substitution was found to be 15°C. Based on the neutron data, the oxygen nonstoichiometry was found to be relatively low. Moreover no influence on the position of the valence band maximum was observed. The influence of the protonation on the electronic structure of constituent oxides has been studied. Absorption data show that the incorporation of protonic defects into the lanthanum orthoniobate structure leads to changes in lanthanum electronic structure and a decrease in the density of unoccupied electronic states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.