Abstract
How substrate affects periphyton biomass and nutrient state at different, but high, nutrient levels was tested in three large enclosures in a hypereutrophic subtropical shallow lake. We compared periphytic characteristics (1) on three hard substrates (stone, bamboo, and wood) incubated for 2 weeks and 1 year, respectively, to investigate the existence of the influences of substrate type at hypereutrophic levels, and (2) on artificial plants with contrasting (parvopotamid-like and myriophyllid-like) soft substrate morphology. In general, periphytic biomass and nutrient state were sensitive to variations in nutrient level, incubation time, hard substrate type (except 2-week incubated) and substrate morphology, but to a varying extent. The periphyton nutrient content increased with increasing nutrient levels on most substrates. Long-time incubated substrates supported more periphytic biomass, had a higher nutrient content and autotrophic proportion, while the effect of nutrient level on nutrient content in the periphyton was independent of incubation time. The effects of hard substrate type on periphyton characteristics were much weaker than those of nutrient level. By contrast, the effects of soft substrate morphology on periphyton biomass and carbon: nutrient ratios surpassed those of nutrient level. Chlorophyll a, dry mass, and ash free dry mass were much higher on parvopotamid than on myriophyllid substrates. Our results show that periphyton biomass and nutrient state are influenced by both substrate and nutrient level even in hypereutrophic lakes, which might have cascading effects on the benthic food web.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have