Abstract

Influence of substitution of 3d metals for Mn on properties of La0.67Ca0.33Mn0.9 TM0.1O3 (TM = Fe, Co, Ni) compounds was studied. Ferromagnetic – paramagnetic and metals – insulator transitions were significantly affected by Mn-site substitution. However, no observable difference was found in their crystal structure from X-ray diffraction analysis. At room temperature the structure characterization of these compounds gave the single phase and structure is the distortion orthorhombic cell with space group symmetry Pnma. The magnetoresistance measurement showed that the magnetoresistance ratio MR increases until 17% in magnetic field of 0.4 T, and in low magnetic field region (μoH < 0.05 T), MR = 7.5% at 102 K. The investigations of EPR showed that the intensity of resonance line can be well fitted by the expression: I(T) = Ioexp(Ea/kBT). The values of activation energy have been determined with Ea = 0.074 eV, 0.093 eV and 0.086 eV for substituted Fe, Co, Ni samples, respectively. These values are slightly smaller than the value of Ea = 0.12 eV for La0.67Ca0.33MnO3. We attribute the reason to the reduction of Mn3+ content caused by TM substitution for Mn. The dependence transition temperatures and transport properties of all samples are well explained by introducing the SE interaction with considering that the Fe3+, Co3+ and Ni2+ ions have high-spin configuration, the local DOS near the Fermi level at the TM site Nx(Ef ) would decrease from Ni to Co and Fe [1], thus reduces the hopping probability and increases the resistivity in order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.