Abstract
ABSTRACT Iron ore fines was isothermally and non-isothermally reduced with CO and the total mass loss was continuously recorded. The different phases developed during the reduction process were identified by X-ray diffraction analysis. The structural changes accompanying the reduction reactions were microscopically examined. During the isothermal reduction tests, temperature has a significant effect on the reduction reaction. At a given temperature, the highest rate was obtained at initial stages whereas the minimum rate was observed at the later stages due to the formation of dense iron layer. The activation energy values (Ea) at the early stages was 39.23kJ mol-1 revealed that the reduction is most likely controlled by a combined effect of gaseous diffusion and interfacial chemical reaction mechanism. At later stages, the Ea values were 54.19 kJ mol-1 indicated that the interfacial chemical reaction is the rate controlling mechanism. Testing of the mathematical formulations derived from the gas-solid reaction model confirmed these controlling mechanisms. The non-isothermal reduction experiments were carried out using different heating rates which showed a considerable effect on the degree of reduction. The reduction conversion continuously increased with rise in temperature. The reduction mechanism was predicted from model free and model fitting. The activation energy values were ranging from 135-40 kJ.mol-1 indicating that gas diffusion is the rate controlling step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.