Abstract

Synthesis of terpyridyl based ligands 3-([2,2':6',2''-terpyridin]-4'-yl)-7-methoxy-2-(methylthio)-quinolone, (L1); 3-([2,2':6',2''-terpyridin]-4'-yl)-6-methoxyquinolin-2(1H)-one, (L2); 3-([2,2'-:6',2''-terpyridin]-4'-yl)-6-methylquinolin-2(1H)-one (L3) and cyclometalated iridium(iii) complexes [[Ir(ppy)2L1]+PF6- (1), [Ir(ppy)2L2]+PF6- (2), [Ir(ppy)2L3]+PF6- (3) (2-phenylpyridine = Hppy)] involving these ligands has been described. The ligands L1-L3 and complexes 1-3 have been thoroughly characterized by elemental analyses, spectral studies (IR, 1H, 13C NMR, UV/vis and fluorescence) ESI-MS, and the structure of 3 has been unambiguously authenticated by single crystal X-ray analyses. UV/vis, fluorescence and circular dichroism spectroscopic studies showed rather efficient binding of 1 with CT-DNA (calf thymus DNA) and BSA (bovine serum albumin) relative to 2 and 3. Molecular docking studies unveiled binding of 1-3 with minor groove of CT-DNA via van der Waal's forces and electrostatically with the hydrophobic moiety of HSA (human serum albumin). The ligands and complexes exhibited moderate cytotoxicity towards MDA-MB-231 (breast cancer cell line) and significant influence on HeLa (cervical cancer cell line) cells. Cytotoxicity, morphological changes, and apoptosis have been followed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) assay, Hoechst 33342/PI (PI = propidium iodide) staining, cell cycle analysis by FACS (fluorescence activated cell sorting), and ROS (reactive oxygen species) generation by DCFH-DA (dichlorodihydrofluorescein diacetate) dye. Confocal microscopy images revealed that the drug efficiently initiates apoptosis in the cell cytosol. The IC50 values showed superior cytotoxicity of 1-3 against the HeLa cell line relative to cisplatin, and their ability to induce apoptosis is in the order 1 > 2 > 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.