Abstract

High-speed ball bearings are widely used in aerospace, high-speed machining tool and other complex mechanical systems. And the stiffness is one of most critical parameter of bearings to decide the machine performance. This paper attempts to construct a 5-DOF stiffness matrix based on quasi-dynamic model of high-speed ball bearings to analyze the variation of stiffness with different work condition precisely, and the variation of stiffness with structural parameter and manufacturing errors are calculated for the optimization of tolerance. In this method, the effect of combined loads and lubrication effect are considered, which can achieve high precision analysis of the relationship between contact load and displacement. And then a 5-DOF stiffness matrix can be calculated precisely. The results can be used to optimize the design bearing for improving stiffness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call