Abstract

In this paper, we examine the features of RSDN-20 signal propagation in a high-latitude Earth–ionosphere waveguide during solar proton events, using computational experiment methods. We have analyzed two proton ground-level enhancement (GLE) events of December 13, 2006 (GLE70) and September 10, 2017 (GLE72). Electron density profiles were constructed using the Global Dynamic Model of Ionosphere (GDMI) and the RUSCOSMICS model, developed at PGI. We present estimated phase and amplitude changes in RSDN-20 signals during precipitation of high-energy protons in the high-latitude region of the Earth–ionosphere waveguide. From the results of computational experiments and the analysis of the electromagnetic signal attenuation based on analytical Maxwell’s equation system solution in magnetized ionospheric plasma, we have found a pattern in the signal attenuation frequency dependence associated simultaneously with the signal reflection height, electron density profiles, and the collision frequency of electrons with neutral particles and ions. We discuss limitations of the computational experiment method and compare simulation results with data from Lovozero and Tuloma observatories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call