Abstract
In cochlear implants (CIs), increasing the stimulation rate typically increases the electric dynamic range (DR), mostly by reducing audibility thresholds. While CI users’ intensity resolution has been shown to be fairly constant across stimulation rates, high rates have been shown to weaken modulation sensitivity, especially at low listening levels. In this study, modulation detection thresholds (MDTs) were measured in five CI users for a range of stimulation rates (250–2000 pulses per second) and modulation frequencies (5–100 Hz) at 8 stimulation levels that spanned the DR (loudness-balanced across stimulation rates). Intensity difference limens (IDLs) were measured for the same stimulation rates and levels used for modulation detection. For all modulation frequencies, modulation sensitivity was generally poorer at low levels and at higher stimulation rates. CI users were sensitive to modulation frequency only at relatively high levels. Similarly, IDLs were poorer at low levels and at high stimulation rates. When compared directly in terms of relative amplitude, IDLs were generally better than MDTs at low levels. Differences in loudness growth between dynamic and steady stimuli might explain level-dependent differences between MDTs and IDLs. The slower loudness growth associated with high stimulation rates might explain the poorer MDTs and IDLs with high rates. In general, high stimulation rates provided no advantage in intensity resolution and a disadvantage in modulation sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.