Abstract

Iridium layers with low stress, high density, and low surface roughness find widespread use in different high-technology applications. This paper presents a study of the influence of the sputtering pressure on the properties of iridium thin films and of its effect on the substrate surface microstructure. We analysed the dependence of the microstructure, crystalline structure, electrical resistivity, and deposition rate on the sputtering pressure and surface defects of the substrate. For the latter, plasma etching of the substrate was performed for different processing times and its effect on the surface roughness of substrates and, subsequently, on the grown iridium films, was examined. The sputtering pressure and the substrate plasma etching time both had a strong influence on the microstructure and surface roughness. These microstructural changes are in good agreement with the tendency described in the Thornton Structure-Zone Model for different sputtering pressures and the microstructure phase map of Alvarez. The electrical resistivity, deposition rate, and crystalline structure were highly dependent on the sputtering pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.