Abstract

This work is a systematic ab initio study of the influence of spin state and cation distribution on the stability, dielectric constant, electronic band gap, and density of states of ternary transition-metal oxides. As an example, the chemical family of spinel ferrites MFe2O4, with M = Mg, Sc–Zn is chosen. Dielectric constant and band gap are calculated for various spin states and cation configurations via dielectric-dependent self-consistent hybrid functionals and compared to available experimental data. When choosing the most stable spin state and cation configuration, the calculated electronic properties are in reasonable agreement with measured values. The nature of the excitation is investigated through projected density of states. A pronounced dependence of band gap energy and dielectric constant on the spin state and cation configuration is observed, which is a possible explanation for the large variation of the experimental results, in particular, if several states are energetically close.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.