Abstract

The structure and function of polymers in confined environments, e.g., biopolymers in the cytoplasm of a cell, are strongly affected by macromolecular crowding. To explore the influence of solvent quality on conformations of crowded polymers, we model polymers as penetrable ellipsoids, whose shape fluctuations are governed by the statistics of self-avoiding walks, appropriate for a polymer in a good solvent. Within this coarse-grained model, we perform Monte Carlo simulations of mixtures of polymers and hard-nanosphere crowders, including trial changes in polymer size and shape. Penetration of polymers by crowders is incorporated via a free energy cost predicted by polymer field theory. To analyze the impact of crowding on polymer conformations in different solvents, we compute the average polymer shape distributions, radius of gyration, volume, and asphericity over ranges of the polymer-to-crowder size ratio and crowder volume fraction. The simulation results are accurately predicted by a free-volume theory of polymer crowding. Comparison of results for polymers in good and theta solvents indicates that excluded-volume interactions between polymer segments significantly affect crowding, especially in the limit of crowders much smaller than polymers. Our approach may help to motivate future experimental studies of polymers in crowded environments, with possible relevance for drug delivery and gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.