Abstract

Research on corrosion of copper pipes has given little consideration to the influence of solid corrosion by-products on the processes occurring at the metal–liquid interface. Consequently, the effect of such solid phases on the rate of dissolved oxygen (DO) consumption remains poorly understood. In-situ experiments were performed in copper pipes under different carbonate concentrations and ageing times. Our results show that the amount of solid corrosion by-products and concentration of hydrogen ions affect the rate of DO consumption during stagnation. Furthermore, our findings support the existing hypothesis that the available concentration of hydrogen ions, rather than DO, is the limiting factor for copper release into drinking water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.