Abstract
All Nuclear power plants consist of several structures of varying importance that have to be designed for dynamic loading like earthquakes and impacts that they might be exposed to. Research on the influence of dynamic loading from blast events is still crucial to address to guarantee the general safety and integrity of nuclear plants. Conventional structural design approaches typically ignore the Soil-Structure Interaction (SSI) effect. However, studies show that the SSI effect is significant in structures exposed to dynamic loads such as wind and seismic loads. The present study is focused on evaluating the Soil-Structure Interaction effects on G + 11 storied reinforced concrete framed structure exposed to unconfined surface blast loads. The SSI effect for three flexible soil bases (i.e., Loose, Medium, and Dense) is evaluated by performing a Fast Non-linear (Time History) Analysis on a Two-Dimensional Finite Element Model developed in (Extended Three-Dimensional Analysis of Building System) ETABS software. Unconfined surface blast load of three different charge weights (i.e., 500 kg TNT, 1500 kg TNT, and 2500 kg TNT) at a standoff distance of 10 m are applied on the structure. Blast wave parameters are evaluated based on technical manual TM-5–1300. The blast response of the structure with and without the SSI effect is studied. It is concluded from this study that, there is a significant variation in dynamic response parameters of the structure with flexible soil bases compared to rigid or fixed base. For all magnitudes of surface blasts and soil base conditions, the ground floor is the most vulnerable floor against collapse. The study recommends measures to mitigate the damage due to unconfined surface blasts on multi-storey reinforced concrete structures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have