Abstract
The effect of intense atomic hydrogen flux on the defect density in the surface layer of single-crystal silicon is studied. It is shown that the formation of local molten regions by pulsed-light heating of Si samples and further analysis of the local melting pattern can be an efficient tool for determining the number of defects introduced by the processing in atomic hydrogen. It was found that the processing conditions in atomic hydrogen with an exposure dose lower than 2.7 × 1017 cm−2 do not change the number of defects in Si; in contrast, conditions with an exposure dose above 3.6 × 1018 cm−2 significantly increase the defect density. The increase in the number of defects can be caused by the interaction of atomic hydrogen with the Si surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.