Abstract

This study evaluates the performance of pervious concrete subjected to rapid freeze–thaw (F-T) cycling, calcium leaching and the combined attack of calcium leaching and F-T cycling. Silica fume, metakaolin and SBR polymer emulsion were incorporated at different levels into pervious concrete mixes to improve strength and durability performances. The results indicated that the addition of 5% fine sand and proper compaction had a positive influence on improving the resistance of pervious concrete to F-T cycling. The increase of supplementary cementitious materials (SCMs) from 5% to 10% significantly improved the resistance to rapid F-T cycling and to the combined attack of calcium leaching and F-T cycling. The optimum content of SCMs was 10% based on the mechanical and durability performance of pervious concrete with acceptable permeability. Calcium leaching in 6 M NH4NO3 solution combined with F-T cycling induced severe surface deterioration and internal damage compared to individual attacks of F-T cycling or leaching. Compared with control and polymer-modified mixes, pervious concrete incorporated SCMs possessed better resistance of calcium leaching and frost. The morphological changes caused by calcium leaching exhibits the decreased volume fraction of solid phases in a cement matrix and consequently increased the porosity, which ultimately degraded strength and durability performance of pervious concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call