Abstract

The photoluminescence (PL) properties of Si-doped cubic GaN with different carrier concentrations were investigated at room temperature. The epilayers were grown on GaAs (001) by radio-frequency molecular-beam epitaxy. It was found that when the carrier concentration is increased from 5×1015 to 2×1018 cm−3, the PL peak shifted towards low energy, from 3.246 to 3.227 eV, and the PL linewidth increased from 77.1 to 121 meV. The PL peak shift is explained by the band gap narrowing effect due to the high doping concentration. The PL linewidth includes two parts: one is doping concentration independent, which is caused by the imperfection of samples and phonon scattering; the other is doping concentration dependent. We assign the second part to the broadening by the microscopic fluctuation of the doping concentration. The experimental measurements are in good agreement with the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.