Abstract

The objective of this paper is to investigate the influence of shallow traps on the signals from Al2O3:C,Mg obtained using time-resolved optically stimulated luminescence (TR-OSL) measurements through experiments and numerical simulations. TR-OSL measurements of Al2O3:C,Mg were carried out and the resulting optically stimulated luminescence (OSL) curves were investigated as a function of the temperature. The numerical simulations were carried out using the rate-equations for a simplified model of Al2O3:C,Mg containing two types of luminescence centers with different luminescence lifetimes and three types of electron traps (a shallow trap, a main dosimetric trap, and a thermally disconnected deep trap). Both experimental results and simulations show that the OSL signals during and between the stimulation pulses are affected by the presence of shallow traps. However, with an appropriate choice of timing parameters, the influence of shallow traps can be reduced by calculating the difference between the signals during and between stimulation pulses. Therefore, TR-OSL can be useful in dosimetry using materials having a large concentration of shallow traps and OSL components with short luminescence lifetimes, for example Al2O3:C,Mg and BeO. Our results also show that the presence of shallow traps has to be taken into account when using the TR-OSL for discrimination between luminescence centers with different luminescence lifetimes, or separation between the OSL from different materials based on their characteristic luminescence lifetimes. The experimental results also show evidence of thermal assistance in the OSL process of Al2O3:C,Mg.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call