Abstract

This paper deals with the determination of the main factors influencing series resistance in p-on-n GaAs solar cells working at concentration levels of 1000 suns or higher. Prior to this analysis, a comparison between different front metal grid geometries is presented to show the strong influence that the front grid component of series resistance exerts on its global value. Once the inverted square grid geometry is selected, a detailed analysis of the different components of series resistance is carried out. For this purpose, a multidimensional optimisation of the whole GaAs solar cell (antireflecting coatings, series resistance and semiconductor structure) has been used for the first time. In order to orient the manufacture of very high concentrator GaAs solar cells, recommendations on the threshold values of solar cell size, specific p- and n-contact resistances, thickness of the front metal grid and both doping level and thickness of the substrate are formulated. Several traditional ideas on the influence of these parameters are questioned. Copyright © 2000 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call