Abstract

Limited spatial resolution is a key obstacle to the study of brain white matter structure with diffusion tensor imaging (DTI). In its frequent implementation with single-excitation spin-echo echo-planar sequences, DTI's ability to resolve small structures is strongly restricted by T2 and T2* decay, B0 inhomogeneity, and limited signal-to-noise ratio (SNR). In this work the influence of sensitivity encoding (SENSE) on diffusion-weighted (DW) image properties is investigated. Computer simulations showed that the PSF becomes narrower with increasing SENSE reduction factors, R, enhancing the intrinsic resolution. After a brief theoretical discussion, we describe the estimation of SNR on a pixel-by-pixel basis as a function of R. The mean image SNR behavior is manifold: SENSE is capable of increasing SNR efficiency by reducing the echo time (TE). Each SNR(R) curve reveals a maximum that depends on the amount of partial Fourier encoding used. The overall best SNR efficiency for an eight-element head coil array and a b-factor of 1000 s/mm2 is achieved at R = 2.1 and partial Fourier encoding of 60%. In vivo tensor maps of volunteers and a patient, with an in-plane resolution of 0.78 x 0.78 mm2, are also presented to demonstrate the practical implementation of the parallel approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.