Abstract
Results from the first fully general relativistic numerical simulations in axisymmetry of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium are presented, aiming to assess the influence of the torus self-gravity on the onset of the runaway instability. We consider several models with varying torus-to-black-hole mass ratio and angular momentum distribution orbiting in equilibrium around a nonrotating black hole. The tori are perturbed to induce the mass transfer towards the black hole. Our numerical simulations show that all models exhibit a persistent phase of axisymmetric oscillations around their equilibria for several dynamical time scales without the appearance of the runaway instability, indicating that the self-gravity of the torus does not play a critical role favoring the onset of the instability, at least during the first few dynamical time scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.