Abstract

We present a formulation for computing equilibria composed of a rotating black hole and a massive self-gravitating torus in general relativity. Such a system is a plausible outcome formed after stellar core collapse of massive and supermassive stars as well as after a merger of a black hole-neutron star binary. In our formulation, the black hole is modeled in the puncture framework. The numerical solutions for equilibria are computed for rapidly rotating black holes and for a wide range of mass ratio of the black hole and torus. The equilibria obtained in this paper can be used for studying nonaxisymmetric instabilities, runaway instability, and magnetorotational instability of a self-gravitating accretion torus around a rotating black hole in numerical relativity. We also remark that the relation among the area, mass, and spin of rotating black holes are slightly modified by the torus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call