Abstract

An experiment was carried out to investigate the effect of salt stress on Periploca sepium Bunge seedlings using three levels of salinity, 50 mmol/L, 100 mmol/L, and 200 mmol/L sodium chloride (NaCl) solution. The results showed that growth parameters and net photosynthetic rate (P<sub>n</sub>), stomatal conductance (G<sub>s</sub>) of Periploca sepium Bunge were enhanced under low salinity levels (50 mmol/L NaCl), which reduced strongly with increasing salinity levels. Under 100 mmol/L NaCl and 200 mmol/L NaCl stress, the decline of P<sub>n</sub> was mainly caused by non-stomatal factors. The water use efficiency (WUE), apparent light use efficiency (LUE), carboxylation efficiency (CUE) were enhanced under low salinity levels (50 mmol/L NaCl), the maximum value of WUE was observed at 100 mmol/L NaCl, the minimum value of WUE was observed at 200 mmol/L NaCl, the LUE, CUE were reduced by 52% and 47%, at 200 mmol/L NaCl, respectively, compared to control. Activities of the antioxidative enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced by low salinity treatment (50 mmol/L NaCl), but CAT activity decreased at 200 mmol/L NaCl stress. Malondialdehyde (MDA) was non-significant compared to the control under low salinity levels (50 mmol/L NaCl), the maximum value was observed at 200 mmol/L NaCl. These results suggest a possibility to improve saline soil utilization of Periploca sepium Bunge in Yellow River Delta region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call